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Abstract

In this paper we present a full-featured license plate
detection and recognition system. The system is imple-
mented on an embedded DSP platform and processes a
video stream in real-time. It consists of a detection and a
character recognition module. The detector is based on the
AdaBoost approach presented by Viola and Jones. Detected
license plates are segmented into individual characters by
using a region-based approach. Character classification is
performed with support vector classification. In order to
speed up the detection process on the embedded device, a
Kalman tracker is integrated into the system. The search
area of the detector is limited to locations where the next
location of a license plate is predicted. Furthermore, clas-
sification results of subsequent frames are combined to im-
prove the class accuracy.

The major advantages of our system are its real-time ca-
pability and that it does not require any additional sensor
input (e.g. from infrared sensors) except a video stream. We
evaluate our system on a large number of vehicles and li-
cense plates using bad quality video and show that the low
resolution can be partly compensated by combining classi-
fication results of subsequent frames.

1. Introduction
There is a need for intelligent traffic management sys-

tems in order to cope with the constantly increasing traffic
on todays roads. Video based traffic surveillance is an im-
portant part of such installations. Information about current
situations can be automatically extracted by image process-
ing algorithms. Beside vehicle detection and tracking, iden-
tification via license plate recognition is important for a va-
riety of applications. These include, e.g. automatic conges-
tion charge systems, access control, tracing of stolen cars,
or identification of dangerous drivers.

Deploying smart cameras for the purpose of video based
traffic surveillance has the advantage of allowing direct on
site image processing tasks. The information is extracted
from the input data and sent in compressed form to a cen-
tral node, hence decreasing demands on both communica-
tion and computation infrastructure. Furthermore, embed-
ded systems are cheaper than general purpose computers
and suitable for deployment in harsh environments due to
their physical robustness.

Most license plate recognition systems in operation to-
day use special hardware like high resolution cameras or
infrared sensors to improve the input quality and they oper-
ate in controlled settings. A different solution, as proposed
in this work, is the continuous analysis and consideration
of subsequent frames. However, this implicates that enough
frames are captured by the capturing device and are pro-
cessed by the processing engine. We state that for the tasks
of car detection and subsequent license plate recognition
real-time is a flexible term. As about 20 fps (frames per sec-
ond) might be enough real-time for this tasks when cars are
driving at residential speeds, this is insufficient for country
roads and highway traffic. In our terminology, real-time op-
eration stands for fast enough operation in order to not miss
a single object that moves through the scene, irrespective of
the object speed.

As we will show, the major advantages of our system
over all others are its real-time capabilities in city scenar-
ios and its ability to operate under daytime conditions with
sufficient daylight or artificial light from street lamps. The
usage of active infrared light is popular because the light
is reflected by the license plates only. By using a camera
and special filters, the detection of the plates and subse-
quent character segmentation is relatively easy. However,
the usage of alternative light sources comes at additional
costs. Thus, one prerequisite during system design was to
build a system which operates with conventional off-the-
shelf video cameras and without additional lighting, in fa-
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vor of the feasibility to deploy and setup the system within a
short time. The major reason why we have focused on cars
driving at residential speeds is the lack of a digital camera
with a high speed shutter. The drawback of using standard
TV cameras is that motion blur is a critical issue, so that
reasonable character recognition becomes almost impossi-
ble when vehicles are moving at high speeds. Note that this
is rather a restriction of the image acquisition device than a
deficit of the system. Our system runs fully autonomous and
embedded on a smart camera, and thus makes integration
into an existing system, e.g. for access control of parking
garages, possible.

In the following, we provide an overview of related work
in the area of license plate detection and recognition sys-
tems. A description of our embedded platform and an
overview of our system is given in section 3. Then, section 4
gives a description of the implementation, the datasets used,
and the results achieved with this system, followed by a per-
formance evaluation on the embedded device. Finally, the
whole paper is summarized in section 5.

2. Related Work
Generally, license plate recognition consists of two sep-

arate parts. First, plates have to be located within the im-
age, termed license plate detection followed by license plate
character recognition, determining the plate number.

Different methods for the detection of license plates can
be applied. Shapiro et al. [17] use a mixture of edge detec-
tion and vertical pixel projection for their detection mod-
ule. In the work of Jia et al. [20] color images were seg-
mented by the MeanShift algorithm into candidate regions
and subsequently classified as plate or not. The AdaBoost
algorithm was used by Dlagnekov and Belongie [6] for li-
cense plate detection on rather low resolution video frames.
Similar features like those introduced in [5] were added to
the classical set of Haar features, and the located plate was
tracked over a sequence of frames. Matas and Zimmer-
mann [13] proposed a different approach for the localization
of license plates. Instead of using properties of the plate di-
rectly, the algorithm tries to find all character-like regions
in the image. This is achieved by using a region-based ap-
proach. Regions are enumerated and classified due to a re-
gion descriptor using a neural network. If a linear combi-
nation of character-like regions is found, the presence of a
whole license plate is assumed.

The method described above can be applied to the seg-
mentation-task of character recognition as well. Shapiro
et al. [17] use adaptive iterative thresholding and analysis
of connected components for segmentation. The classifica-
tion task is performed with two sets of templates. Rahman
et al. [14] used horizontal and vertical intensity projection
for segmentation and template matching for classification.
Dlagnekov and Belongie [6] use the normalized cross corre-

lation for classification by searching the whole plate, hence
skipping segmentation.

Those systems described above have not been specifi-
cally designed for embedded systems. A lot of commercial
mobile systems exist, most of them equipped with special
hardware to improve the quality of the input image. Ka-
mat and Ganesan [10] implemented a license plate detec-
tion system on a DSP using the Hough transform. Kang
et al. [11] implemented a vehicle tracking and license plate
recognition system on a PDA. A FPGA was used by Bellas
et al. [3] to speed-up parts of their license plate recognition
system.

A comparison of different LP detection and recognition
systems is difficult as each one is subject to differing pre-
requisites. Furthermore, the lack of a common evaluation
database makes evaluations and comparisons unfair. Our
focus was on the architecture and implementation of a com-
plete LPR system on our embedded platform. Thus, we
have omitted a detailed discussion of algorithm complexity,
power efficiency and accuracy. We have only cited those
systems which are somehow related to mobile devices or
embedded architectures, or which have recently introduced
new techniques to the area of LPR.

3. Embedded Platform Description and
System Overview

The target platform for our algorithms is similar to the
one presented in [2]. Summarizing the most important pa-
rameters relevant for the task of implementation, the pro-
cessing core is a single Texas InstrumentsTM C64 fixed
point DSP with 1MB of cache RAM. Additionally a slower
SDRAM memory block of 16MB exists. The embedded
system does not incorporate a specific camera but allows
for connecting any analog or digital video source over ap-
propriate connectors.

An overview of our software framework is depicted in
Figure 1. The system consists of two modules: License
Plate Detection and License Plate Character Recognition.
First, license plates are detected within the input-image. Af-
ter post-processing, a tracker is initialized for each newly
detected plate in order to optimize the detection process and
to create a relation between subsequent frames. Then, de-
tected plates are handed over to the character recognition
module. The segmentation process extracts single charac-
ters, to which a class-label is assigned through classifica-
tion. Finally, post-processing considers history-information
acquired by the tracker to improve the classification-result.

3.1. License Plate Detection

The detection module consists of three parts: the detect-
ing, the tracking and the post-processing step. All parts and
their interaction are described in the following.



Figure 1. Our system contains two main modules. Given an image sequence as input, the first module, the detection module, applies
algorithms for detecting and tracking of license plates. In the second module, segmentation and, subsequently, character recognition is
performed to generate the final result.

Detector The license plate detector is based upon the
framework proposed by Viola and Jones [19]. Viola and
Jones created a fast object detection system by combining
the AdaBoost-algorithm [8] with Haar-like features, a clas-
sifier cascade and the integral image for fast feature compu-
tation. Unlike the original framework, the RealBoost [15]
is used for this detector, which provides confidence rated
predictions instead of binary class-labels. Furthermore, the
classifier cascade is improved by using inter stage feature
propagation as proposed by Šochman and Matas [18]. The
feature-pool is extended with features based on edge orien-
tation histograms as proposed by Levi and Weiss [12].

Post-processing The exhaustive search technique of the
Viola and Jones detector leads to multiple detections for
a single license plate. Therefore, post-processing methods
have to be applied in order to merge those detections. For

this purpose the rather simple non-maximum suppression
is used. The non-maximum suppression merges multiple
detections, considering the confidence value of each detec-
tion. In our case all overlapping detections are substituted
by the single detection with the maximum confidence value.
If the false positive rate is not too high, this method achieves
sufficient results. Nonetheless, the final detection does not
solely contain the license plate but parts of the surroundings
as well.

Tracker A Kalman tracker [9] is integrated into the sys-
tem in order to limit the search of the detector to certain
areas of the input image. This requires a rough calibration
of the scene. Figure 2 illustrates a possible setting. Objects
are assumed to enter from the top. A static region of interest
is defined where the Viola and Jones detector search is per-
formed on each frame. For each new detection a Kalman



tracker is initialized, which predicts the new object’s po-
sition on the next frame. This allows for scanning solely
within a small area around the estimated position.

The update and prediction operations of the tracker re-
quire less computation time than a detector scan for the
whole image. Therefore, the integration is indeed useful.
Furthermore, the tracking information will be important for
the character classification step as well.

3.2. License Plate Character Recognition

License plate character recognition consists of three sep-
arate parts as depicted in Figure 3: First, characters are
isolated with a region-based approach, followed by char-
acter classification using a support vector machine (SVM).
Finally, during post-processing, a priori knowledge about
the expected license plates and information provided by the
tracker is used to improve the classification result.

Figure 2. Illustrates a possible setting of static and dynamic search
areas. In this case, objects are assumed to enter from the top. A
tracker predicts the object’s occurrence on the next frame, limiting
the Viola and Jones exhaustive search to a small area.

Segmentation A region-based approach is used for char-
acter segmentation. Due to dark characters on white back-
ground, region-growing seeded with lowest intensity val-
ues is applied. In order to determine which regions con-
tain a character two approaches are used. Similar to [13] a
region descriptor is computed incrementally, consisting of
compactness, entropy of the grayscale histogram, and cen-
tral invariant statistical moments. Descriptors are classified
using support vector classification.

Since the relation between the size of a license plate and
its characters is approximately known in advance, classifi-
cation can be achieved as well with rather simple checks

Figure 3. License Plate Character Recognition overview. After
segmentation, a geometric check is performed to early discard re-
gions unlikely being a character. The regions are subsequently pre-
classified to further eliminate false positives. The Support-Vector
classification is subsequently used to determine the true number.
All results for a single plate track are involved in a majority-voting
step to finally determine the true plate number.

containing size and width/height-ratio of found regions.
Furthermore the median-height of all regions is determined
and those with a high deviation are discarded. Finally, the
correct alignment of subsequent regions is constrained us-
ing a Hough transform.

Classification Support vector classification is used for
character classification. Segmented regions are scaled to
a common patch size. The feature vector consists of direct
pixel values. Since character recognition is a multi-class
problem a combination of binary classifiers is required.



Two approaches have been used:

OneVsAll. k binary SVMs are trained with one class hav-
ing a positive label and all other k − 1 classes having
a negative label. k decision functions exist. The target
class of a feature is determined by taking the largest
value of the decision function.

Tree-like structure. Characters are divided into groups of
characters with similar shape. Within the upper tree
layers, decisions between those sets have to be made.
The determination of the final character class takes
place only at the leafs of the tree. The chosen arrange-
ment is shown in Figure 4. It was constructed manually
by inspecting a previously determined confusion table.

For the SVMs radial basis functions (RBFs) are applied
as kernel functions, since they achieve the best results. A
radial basis function has the form

K(xi, xj) = e−γ‖xi−yj‖2 γ > 0. (1)

The parameters C (the penalty parameter) and γ are de-
termined by searching the parameter space using n-fold
cross validation and selecting the parameter pair yielding
the highest classification rate. Both SVM structures, one-
vs-all and tree shaped, are tested setting all classification-
pairs to identical parameters or by determining C and γ for
each classification-pair individually. For the OneVsAll ap-
proach, the former methods achieve the best results. For the
tree-like structure, the best parameters are determined for
each node individually. For an introduction to SVMs see
[7] or [16].

Post-Processing In this step a priori knowledge about the
structure of license plates is exploited i.e. spacing between
subsequent characters and furthermore the syntax of the fi-
nal character string. Needless to mention that this applies
only in cases where the nationality of the license plate is
known in advance or can be derived beforehand.

Additionally, classification results of subsequent frames
are combined utilizing the history provided by the tracking
module. A simple majority voting individually for each po-
sition within the character string is applied. The character
achieving the highest count is selected.

4. Experiments
This section starts with details about the implementation

on the embedded device. It continues with a description
of the datasets used for training and evaluation, followed
by a separate discussion of the license plate detector and
the character recognition module. Finally, a performance
evaluation of the implementation on the embedded device
is performed.

4.1. Implementation Details

Due to the interlaced PAL video, a frame resolution of
352×288 was used on the embedded device. The detection
and recognition process operates on each individual frame,
finally transmitting detection and classification results and
a compressed image to a connected client.

Only the classification part of both, the Viola and Jones
detector and the support vector machine, was ported to the
embedded device. The training of both learning algorithms
was conducted off-line on a general purpose computer. The
SVM library LIBSVM by Chang and Lin [4] was used for
the SVM training and was adapted to the use on the DSP.
Due to the low amount of memory (i.e. 1 MB Cache) avail-
able on the embedded device and the necessity for swap-
ping out to the slower SDRAM, the memory layout required
a more compact representation. Furthermore, part of the
SVM kernel computation was changed to a fixed point rep-
resentation due to the DSP’s lack of a floating point unit.

4.2. Dataset

Two sets of test data mainly containing Austrian li-
cense plates were acquired. One set contains 260 images
of license plates extracted from parking cars which were
taken using a digital photo camera. The resolutions were
90×30 and 120×40. These images were taken for train-
ing the Viola-Jones detection algorithm. The second dataset
originated from a video sequence, showing slowly moving
cars (less than residential speed) acquired from a pedes-
trian bridge. The extracted video frames showed license
plates with a resolution of approximately 90×30. The video
was captured on a day with alternating weather conditions
(sunny, overcast, highly clouded), so the video contains sig-
nificant illumination changes. For SVM training 2600 char-
acters were extracted from the first dataset and labeled by
hand. In fact, this is the most time consuming step in the
whole system setup. The extraction, labeling and training
step is necessary for all different plates originating from dif-
ferent countries as long as they include different font types.

4.3. License Plate Detector

Different classifiers are trained for the license plate de-
tector. The quality is evaluated automatically on a labeled
dataset using methods as introduced by Agarwal et al. [1].
Table 1 lists a set of classifiers and the achieved F-measures.

Edge orientation features achieved the same quality with
less than half the number of features compared to a classifier
using Haar-like features only. Nonetheless, features based
on edge orientation histograms require too much memory
in order to be applicable on embedded systems.

Finally, classifier 1 is used on the embedded device due
to its low number of features. If the detector is evaluated
after the subsequent segmentation, constraining the number



Figure 4. Illustrates the partition of classes as used in the tree-like structure.

ID #stages #Haar-ft #EOH-ft ISFP stage dr stage fp max F-measure
1 4 14 0 Y 0.99 0.6 0.748718
2 10 37 0 N 0.99 0.5 0.839623
3 8 35 0 Y 0.99 0.5 0.862245
4 8 8 9 N 0.99 0.5 0.864078

Table 1. Overview of the classifiers trained and tested. Columns Haar-ft and EOH-ft, respectively, list the number of used features of the
two categories. ISFP indicates whether the classifier was trained with inter stage feature propagation or not. The next two columns list the
per stage detection rate and false positive rate, which are parameters of the training process as well. The maximum F-measure that was
achieved during evaluation is listed last.

of possible character regions, a high amount of false pos-
itives can be discarded, achieving a F-measure of 0.91 for
this classifier.

The detector is trained with plates scaled to a resolution
of 60×20. Although this resolution hardly allows for ro-
bust character recognition, it supports the idea of possibly
running the detector at lower resolutions than the subse-
quent character recognition stage, hence improving the per-
formance of the detector.

4.4. License Plate Character Recognition

For training the support vector machine 2600 characters
are used, scaled to a patch size of 6×9, hence resulting in
a 54-dimensional feature vector. This resolution achieves
the best trade-off between performance and quality. Tests
were performed with 8×12 and 10×15 patches as well. A
support vector machine trained on those samples resulted
only in a slightly better quality (less than 1%). This shows,
that with our test-sets an increase of the patch-size does not
improve the classification result. The quality limiting factor
can be found in the character segmentation step at such low

resolutions. The lower the resolution the harder becomes
the accurate isolation of individual characters.

Table 2 compares the two different multi-class ap-
proaches on the digital camera (1) and the video data (2).
The results are determined on a general purpose computer.
As expected, the OneVsAll approach achieves higher clas-
sification results. The column invalid check indicates, how
many plates are correctly detected as being incorrect.

As already described, subsequent classification results
are combined on the embedded system. Figure 6 illustrates
how the quality improves as more plates are considered for
majority voting. Sequences of license plates were chosen
having at least 10 license plates each. Note, that a direct
comparison to table 2 is not fair, since the input data was
converted twice from digital to analog and back (due to the
usage of an analog video interface), adding additional noise
to the video frames.

4.5. Performance

Table 3 lists performance measurements determined with
classifier 1 and support vector classification using the tree



type test set post-process level per char per plate invalid check
OneVsAll 1 1 98% 89% 11%
OneVsAll 1 2 98% 96% 60%
OneVsAll 2 1 94% 78% 8%
OneVsAll 2 2 94% 85% 30%

tree 1 1 97% 89% 18%
tree 1 2 97% 94% 61%
tree 2 1 88% 66% 4%
tree 2 2 89% 77% 13%

Table 2. Classification results. Invalid check indicates how many invalid plates are correctly detected as being incorrect.

Figure 5. Testdata. The first set was acquired with a digital cam-
era. For training the detector, those plates were scaled down to a
resolution of 60×20. Below, sample frames from the video stream
are depicted.

multi-class structure. Note, that Viola and Jones dynamic
search, segmentation, and classification are only considered
for the measurement, if they are invoked on a license plate
effectively. Otherwise, the average time would drop down
to zero.

Figure 6. Plate quality after majority voting. As can easily be seen,
the recognition performance is improved as classification results
from more subsequent frames are incorporated.

On average, the support vector machine takes 7.30 ms
for the classification of a full plate. If assuming the number
of characters per license plate is seven, the classification
process per characters takes approximately 1 ms. Classifi-
cation using the OneVsAll support vector machine takes on
average 20.17 ms, hence requiring approximately 2.88 ms
per character.

The time per frame is measured over any frame, whether
it contains a license plate or not. Therefore, this value has
a high standard deviation. The achieved average frame rate
is 19 fps. A closer look at the timing results reveals that
the plate detection module takes much more time than the
recognition module. Therefore it is advisable to further op-
timize this part of the system to free resources for the recog-
nition engine. Strengthening the support vector classifica-
tion algorithm would result in an improvement of the recog-
nition performance.

5. Conclusion
In this paper we have presented a real-time license plate

detection and recognition system. The system operates on



Operation avg. time [ms] std. dev.
Image acquisition 2.64 0.00
Integral Image computation 3.22 0.53
VJ static 26.72 1.38
VJ dynamic 6.77 1.58
KalmanTracker update 0.18 0.09
Segmentation 1.82 0.65
Classification 7.30 2.64
JPEG compression/sending 10.65 0.26
Message creation/sending 0.11 0.18
per frame 52.11 11.89

Table 3. Performance measurements of critical functions on the
DSP using the tree-like classifier for character recognition.

image frames acquired with standard video equipment with-
out any additional sensor input. The high performance of
the system allows for compensating the low image resolu-
tion by considering the classification results of subsequent
frames.

Due to the complete integration on an embedded device,
the system operates autonomously, reporting only the final
classification results to connected operators. Self-evidently,
all advantages and capabilities of distributed systems apply
here as well.

We are currently working on an optimization to the de-
tection algorithm implementation; our goal is to adapt the
algorithm to better fit to the architectural characteristics of
our platform. In the future we will also have a look at spe-
cial region segmentation methods as the one proposed in
[13] and examine their applicability on our hardware.
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